Metodología para ponderar áreas de evaluación de la herramienta ADOS-G en trastorno del espectro autista con redes neuronales artificiales y método de Taguchi

 

M. Reyes, P. Ponce, D. Grammatikou, A. Molina

 

 

El diagnóstico del autismo requiere del uso de herramientas de diagnóstico validadas internacionalmente que son utilizadas por los profesionales de la salud expertos en trastornos del espectro autista, lo cual requiere de procesamiento de mucha información y un entendimiento técnico de cada una de las áreas evaluadas en ellas. La clasificación del impacto que tienen cada una de estas áreas, así como la propuesta de un sistema que pueda ayudar a los expertos en el diagnóstico, es una tarea compleja, por lo que en este artículo se presenta una metodología utilizada para encontrar los elementos más significativos de la herramienta de diagnóstico de autismo ADOS-G a través de redes neuronales artificiales entrenadas con retropropagación del error. El número de casos para entrenamiento de la red se seleccionó utilizando el método de Taguchi con arreglos ortogonales, reduciendo el tamaño de la muestra de 531,441 a solo 27 casos. La red entrenada tiene una exactitud del 100\% validada con 11 casos diferentes de niños evaluados para diagnóstico de trastorno del espectro autista con lo que se obtuvo una especificidad y sensibilidad de 1. La red neuronal artificial se utilizó para clasificar los 12 elementos del algoritmo de la herramienta ADOS-G en tres niveles de impacto: Alto, Medio y Bajo. Se encontró que los elementos ``Mostrar'', ``Placer compartido durante la interacción'' y ``Frecuencia de vocalizaciones dirigidas a otros'' son las áreas de mayor impacto para el diagnóstico de autismo. La metodología presentada puede ser replicada para diferentes herramientas de diagnóstico de autismo para clasificar sus áreas de mayor impacto también.